

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Polarized Infrared and Raman Spectra and *Ab-Initio* Calculations of 2-(Methylthio)Benzothiazole

Adriano Bigotto^a; Barbara Pergolese^a

^a Department of Chemical Sciences, University of Trieste, Trieste, Italy

To cite this Article Bigotto, Adriano and Pergolese, Barbara(2000) 'Polarized Infrared and Raman Spectra and *Ab-Initio* Calculations of 2-(Methylthio)Benzothiazole', *Spectroscopy Letters*, 33: 4, 535 — 545

To link to this Article: DOI: 10.1080/00387010009350137

URL: <http://dx.doi.org/10.1080/00387010009350137>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

POLARIZED INFRARED AND RAMAN SPECTRA AND *Ab-Initio* CALCULATIONS OF 2-(METHYLTHIO)BENZOTHIAZOLE

Key words: 2-(methylthio)benzothiazole, infrared, Raman, polarized spectra, *Ab-Initio* Calculations

Adriano Bigotto* and Barbara Pergolese

Department of Chemical Sciences - University of Trieste
Via L.Giorgieri 1 - 34127 Trieste – Italy
e-mail:bigotto@univ.trieste.it

ABSTRACT

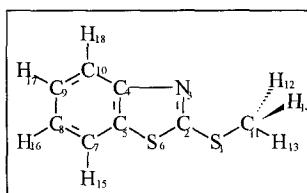
The infrared spectra of 2-(methylthio)benzothiazole have been measured from 4000 to 180 cm⁻¹ for liquid and polycrystalline samples, polarized spectra of oriented films have also been obtained. The Raman spectra of polycrystalline and liquid samples have been investigated. The structural parameters, energies and vibrational frequencies have been calculated from *ab-initio* RHF calculations using the 6-31G^{**} basis set for various conformations. A detailed assignment of most of the observed bands has been proposed on the basis of the infrared dichroism, Raman polarization data and frequency calculations.

INTRODUCTION

Besides applications in the fields of rubber technology and photography, shared with 2-mercaptopbenzothiazole and its derivatives¹, the use of 2-(methylthio)benzothiazole (MTBT in the following) as a transparentizing agent for electrophotographic migration image members² and as a component of electrochromic materials³ has been recently suggested. A thorough knowledge of

*Author to whom correspondence should be addressed

the photophysical properties, in particular the optical spectra, could be of much help in understanding the behaviour of such systems. To this purpose we have undertaken an investigation of the optical spectra of MTBT and other parent compounds. At our best knowledge, an interpretation of the vibrational spectra has not yet been reported in the literature. Therefore, it was thought worthwhile to investigate the infrared and Raman spectra, also using the polarized light techniques, and to carry-out *ab-initio* calculations in order to have a firm theoretical basis for the assignment of the vibrational modes and to get information about the stable molecular conformations. We present here the vibrational assignments proposed on the basis of the infrared dichroic data and of the polarization of the Raman bands, keeping in mind the results of the theoretical calculations of the harmonic frequencies.


EXPERIMENTAL

MTBT from Aldrich was purified by repeated crystallizations from methanol. The trideuteromethyl-derivative was obtained from 2-mercaptopbenzothiazole in alkaline solution by addition of CDI, following the method of Hofmann⁴. The infrared spectra were recorded on Perkin-Elmer 983G and System 2000 spectrophotometers. Polycrystalline samples were in the form of KBr pellets and Nujol mulls. Spectra of liquid films, obtained by melting the substance between CsI windows, were also obtained. Since the low melting-point of the substance prevented preparation of single crystals suitable for polarized light measurements, well oriented polycrystalline films were prepared by slow cooling of melts, between CsI plates, under a suitable temperature gradient. An area of the film which appeared uniform in orientation between crossed polarizers was chosen and the remaining was masked off. An investigation of the extinction peculiarities of the sample by means of the polarizing microscope⁵ suggested that the optical symmetry plane **ac** was perpendicular to the plane developed by crystallization. The measurements of the polarized spectra were carried out using a wire-grid polarizer. The Raman spectra were obtained both with a SPEX Ramalog spectrometer, using the 488.0 nm line of a Spectra-Physics model 165 Ar⁺ laser for the excitation, and with a Perkin-Elmer System 2000 FT-Raman instrument, with the excitation provided by the 1064 nm line of a diode-pumped Nd-Yag laser. The samples were enclosed in capillary cells. Depolarization ratios were measured for melted samples.

Details of calculations

The geometry of MTBT was optimized within the Hartree-Fock method using the 6-31G** basis set and allowing all the parameters to relax. Two structures, both with Cs symmetry, were found to correspond to energy minima, as revealed by the absence of imaginary values in the frequency calculations. In the more stable structure the S-CH₃ group has a *syn*- configuration with respect to the

C-N bond of the thiazole ring, whereas in the less stable structure, differing by 2.583 Kcal/Mole, the configuration is *anti*- . The *syn*- configuration is also found for the molecules in the crystal⁶. Since in the spectra of liquid samples there is no evidence of the presence of detectable amounts of different conformers, only the more stable configuration will be discussed in the following. The atom numbering is indicated in Scheme 1. The harmonic frequencies and the normal modes were calculated analytically at the same level of approximation using the following parameters obtained from the optimization step (distances in Å, angles in degrees): C₂S₆=1.7561; C₂N₃=1.2672; C₄N₁=1.3892; C₄C₅=1.392; C₅S₆=1.7499; C₂S₆=1.7605; C₅C₇=1.3875; C₈C₈=1.38; C₈C₉=1.3964; C₉C₁₀=1.3781; C₁₀C₄=1.3914; C₇H₁₅=1.0748; C₈H₁₆=1.0753; C₉H₁₇=1.0753; C₁₀H₁₈=1.0744; S₁C₁₁=1.8094; C₁₁H₁₂=C₁₁H₁₄=1.0794; C₁₁H₁₃=1.0819; S₁C₂N₃=124.8776; N₃C₂S₆=116.5002; C₂N₃C₄=111.0384; N₃C₄C₅=115.3314; C₄C₅S₆=109.0249; C₅S₆C₅=88.1051; C₄C₅C₇=121.595; C₅C₇C₈=118.0399; C₅C₇H₁₅=121.1248; C₇C₈C₉=120.8169; C₇C₈H₁₆=119.5449; C₈C₉C₁₀=120.9182; C₈C₉H₁₇=119.4179; C₉C₁₀C₄=118.7843; C₉C₁₀H₁₈=121.6311; N₃C₄C₁₀=124.8229; C₂S₁C₁₁=100.3158; S₁C₁₁H₁₂=S₁C₁₁H₁₄=110.4861; S₁C₁₁H₁₃=105.9297; H₁₂C₁₁H₁₃=H₁₄C₁₁H₁₃=110.0381; H₁₂C₁₁H₁₄=109.801; H₁₄C₁₁S₁C₂=60.8551; H₁₂C₁₁S₁C₂=-60.8551; H₁₃C₁₁S₁C₂=180.0

Scheme 1

Calculations were performed using the GAUSSIAN 94 program⁷ . A semiquantitative description of vibrational modes in terms of internal coordinates was also obtained. To this purpose the cartesian force constants were transformed to the internal coordinate space using the relationship

$$\mathbf{F}_{\text{int}} = (\mathbf{B}^{-1})^T \mathbf{F}_{\text{cart}} (\mathbf{B}^{-1})$$

where the pseudo-inverse \mathbf{B}^{-1} matrix was obtained following the procedure outlined by Boatz and Gordon⁸ and using the optimized geometry. A redundant set of 66 internal coordinates was used: torsional coordinates were defined according to the suggestions of Keresztfury *et al.*⁹ . The \mathbf{F}_{int} and \mathbf{G} matrices built in the previous step were used to perform a standard zero-order GF-matrix treatment from which the vibrational frequencies and the Potential Energy Distribution (P.E.D.) were obtained. A uniform scaling of 0.81 was applied to the force constants. It is worth mentioning that the frequencies computed with \mathbf{F}_{cart} and \mathbf{F}_{int} were in complete agreement.

RESULTS AND DISCUSSION

Selection rules and spectral predictions

MTBT crystallizes in the monoclinic system, space group $P2_1/c$ (C_{2h}^5)⁶. There are four molecules in the unit cell located on C_1 sites, and the molecular skeleton is planar with the exception of the S-CH₃ group, which lies 0.19 pm out of the molecular plane. So, keeping in mind the results of the *ab initio* calculations, a C_s symmetry is assumed for the discussion of the spectra. The selection rules for the MTBT molecules and the crystal are given in Table 1.

According to Table 1, each molecular fundamental should give four components in the crystal spectrum for $k=0$, two being infrared active and two Raman active; one of the infrared active components is polarized along the **b** axis, the other in the **ac** plane. The A' and A" molecular fundamentals could be discriminated, to some extent, on the basis of the Raman polarization data of the liquid samples.

Information concerning the assignments of the infrared bands can also be obtained from the consideration of their dichroism. The oriented gas model may be used to predict the behaviour in polarized light. For the isolated molecule, only the direction of the transition moments of the A" vibrations is fixed by symmetry in a direction perpendicular to the molecular plane. The direction of transition moments of the A' modes are only being restricted in the plane of the molecule. Therefore, using the atomic coordinates given by Wheatley⁶, the proportionality factors for the absorption intensities of A" modes, for light polarized along some significant crystallographic directions, as

	a* ($\perp bc$)	b	c
I(A")	0.540	0.456	0.003

From these values it can be argued that, in the polarized infrared spectra recorded on the **bc** crystal plane, the A" out-of-plane modes should give the strongest component when the electric vector of the light is parallel to the **b** crystal axis. Bands showing a strong component perpendicular to the **b** axis or components in both polarizations can be confidently assigned to A' in-plane modes. Since the orientation of the crystal axes with respect to the polarizer was not initially known, the following procedure was used to interpret the dichroic spectra. The strong infrared band at 756 cm⁻¹, whose assignment to an A" out-of-plane CH bending mode may be considered firmly settled on the basis of the Raman depolarization ratio, absorption intensity, and correlative arguments^{10,13}, was chosen as reference. A polarizer orientation giving the maximum intensity for this band was set up (β -spectrum): by 90° rotation of the polarizer the intensity of the band was reduced to a minimum value (α -spectrum). Keeping in mind the relative intensities predicted by the oriented-gas model and the extinction

TABLE I

Selection rules for the free molecule and the unit cell of MTBT

Molecule C_s	Site C_1	Unit cell C_{2h}
		$A_g 54 (3T+3T) (R)$
$A' 32 (IR, R)$		$B_g 54 (3T+3R) (R)$
$A'' 16 (IR, R)$	$A 48 (IR, R)$	$A_u 53 (2T+3R)+T_b (IR)$
		$B_u 52 (1T+3R)+T_{a,c} (IR)$

T= Translatory lattice modes; R= Rotatory lattice modes

properties observed under the polarizing microscope, this behaviour is consistent with an orientation of the **b** and **c** axes parallel to the electric vector direction giving the β - and α -spectrum, respectively.

Vibrational assignments

The polarized infrared spectra are shown in Figure 1 and the relevant infrared and Raman data are collected in Table 2 together with the assignments. The approximate descriptions of the fundamentals are given with reference to the P.E.D. values obtained from the normal coordinate calculation.

Two CH stretching fundamentals for the benzene ring may be safely assigned to the polarized Raman bands observed at 3060 and 3028 cm^{-1} in the spectrum of the liquid, which correspond to the weak infrared absorption at 3064 and 3026 cm^{-1} , respectively. One of the remaining two fundamentals of this type may be associated to the α -polarized infrared band at 3053 cm^{-1} , whereas no obvious candidate for the fourth mode may be proposed on the basis of the available experimental data. The high-frequency component of the weak infrared doublet at 3011-3006 cm^{-1} is tentatively proposed on correlative grounds¹¹ and on the basis of the observation that a weak absorption at 3013 cm^{-1} is still present in the spectrum of the $-\text{CD}_3$ derivative. The assignment of one of the CH_3 stretching fundamentals of A' symmetry to the polarized Raman band at 2928 cm^{-1} is straightforward since it completely disappears after deuteration, the corresponding CD_3 stretching mode being observed at 2130 cm^{-1} . Likewise, the observation that the weak absorption at 3006 cm^{-1} is completely absent in the spectrum of the $-\text{CD}_3$ derivative suggests its assignment as another $-\text{CH}_3$ stretching fundamental. This choice is also supported by the disappearance, after deuteration, of a weak Raman

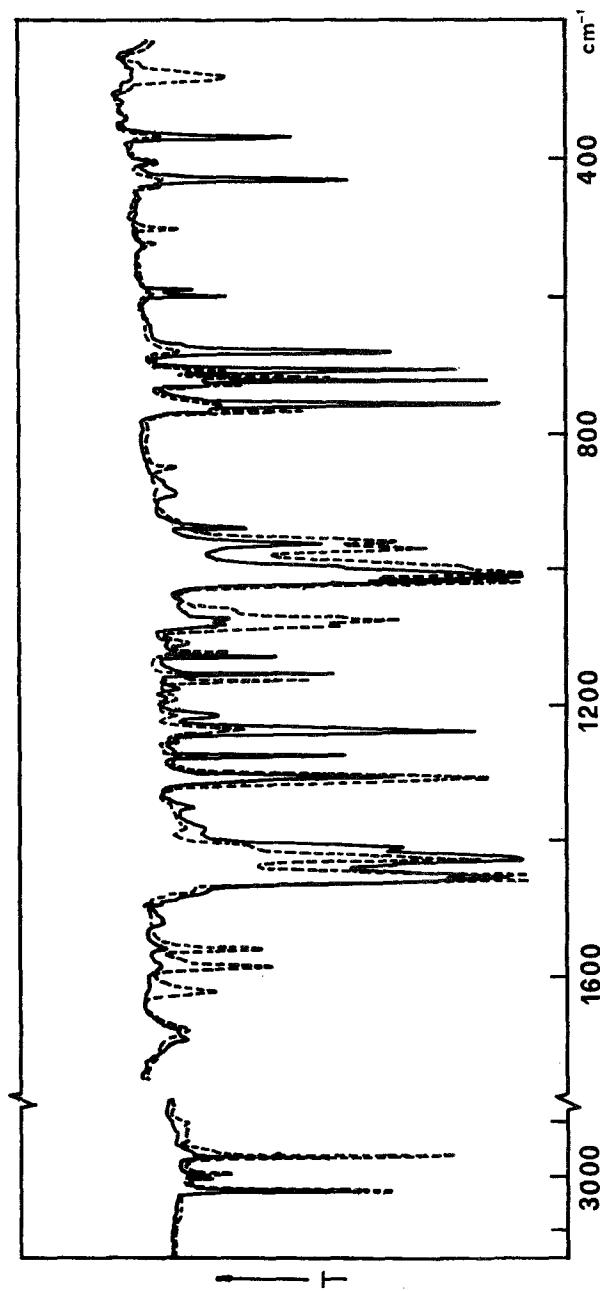


FIG. 1. Polarized infrared spectra of 2-(methylthio)benzothiazole.
Solid line: β -spectrum; dashed line: α -spectrum

band in the same range. Moreover, the β -polarization of the infrared band is consistent with the attribution to the A'' symmetry. According to the *ab-initio* calculations the remaining CH_3 stretching fundamental of A' symmetry should fall at wavenumbers slightly lower than that of the A'' fundamental. The band at 2990 cm^{-1} , which is not affected by the deuteration of the methyl group, must be ruled out, but a careful comparison of the infrared spectra of $-\text{CH}_3$ and $-\text{CD}_3$ derivatives reveals that a shoulder on the low-frequency side of this band is present at 2981 cm^{-1} only in the spectrum of the normal derivative and so it can be tentatively assigned to this mode.

Two A' skeletal stretching fundamentals can be safely assigned to the infrared bands found at 1589 and 1558 cm^{-1} in the spectrum of the liquid compound, their attribution being supported by the Raman polarization data and by the dichroism. Calculations suggest the presence of another A' mode in the range 1650 - 1600 cm^{-1} : although no Raman bands are present in this range, it appears reasonable to assign this fundamental to the shoulder observed at 1615 cm^{-1} in the infrared spectrum of the liquid sample, with an α -polarized counterpart at 1620 cm^{-1} in the spectrum of the oriented sample. Skeletal stretching fundamentals as well as methyl bending modes¹² are expected in the region 1500 - 1290 cm^{-1} , but deuteration does not cause appreciable effects on the spectra in this range, excepting a change in the relative intensities of the two strong polarized Raman bands at 1460 and 1426 cm^{-1} and a noticeable reduction of the intensity of the low-frequency shoulder of the last band. So, it appears reasonable to assign these bands to the skeletal stretching fundamentals calculated between 1500 and 1400 cm^{-1} and to assume that the methyl bending fundamentals have low intensity. That one corresponding to the A'' component of the degenerate bending very likely contributes to the intensity of the shoulder at 1412 cm^{-1} . This hypothesis is in agreement with the β -polarization of the infrared band observed at 1411 cm^{-1} in the dichroic spectrum. That one corresponding to the A' component is probably hidden by the strong skeletal band at higher frequency.

Some support to this interpretation is supplied by the polarized infrared spectra, where a number of crystal components exceeding those estimated on the basis of the selection rules of Table 1 is observed in the region between 1450 and 1460 cm^{-1} . No satisfactory candidate may be proposed for the $-\text{CH}_3$ symmetric bending mode calculated at 1351 cm^{-1} , since all the weak features observed in the range 1400 - 1300 cm^{-1} are present both in the spectra of the normal compound and in those of the deuterated derivative. As to the methyl rocking modes, which are expected between 1030 and 960 cm^{-1} on correlative basis¹², two infrared bands are observed at 970 and 960 cm^{-1} , which disappear on deuteration, may be safely chosen for this assignment; the A'' component has been chosen on the basis of the Raman polarization data rather than considering the infrared dichroism. Also, the assignment of ν_{42} to the α -polarized band at 523 cm^{-1} has to be considered as tentative and mainly suggested by the calculations.

Calculations reveal that the $\text{C}_2\text{-S}_1$ stretching contributes to several modes, the largest P.E.D. element being that calculated for the frequency at 357 cm^{-1} ,

TABLE 2
Experimental spectral data, calculated frequencies (scaled values) and assignments for
2(methylthio)-Benzothiazole

infrared frequencies and polarizations(P)			Raman shift and polarizations (P)		Calc.	Assignments and P.E.D. (>10%)
solid	P	liquid	solid	liquid		
3064 vw		3060 m	3063 w	3060 mw,p	3046 A'	v_1 20 $r_{9,17}$, 68 $r_{10,18}$
3052 mw	α		3054 mw		3038 A'	v_2 46 $r_{7,15}$, 34 $r_{16,8}$, 18 $r_{10,18}$
3025 vw	β	3028 w	3022 w	3028 vw,p	3027 A'	v_3 38 $r_{7,15}$, 38 $r_{17,9}$, 13 $r_{16,8}$, 10 $r_{10,18}$
3011 vw					3014 A'	v_4 12 $r_{7,15}$, 45 $r_{16,8}$, 39 $r_{17,9}$
3006 vw	β		3009 vw		3004 A''	v_{33} 50 $r_{11,12}$, 50 $r_{11,14}$
2990 w	$\alpha=\beta$	2994 w	2991 vw	2993 vw,dp	2990 A'	v_5 23 $r_{11,12}$, 54 $r_{11,13}$, 23 $r_{11,14}$
2981 sh					2904 A'	v_6 27 $r_{11,12}$, 46 $r_{11,13}$, 27 $r_{11,14}$
2925 mw	$\alpha=\beta$	2926 m	2925 mw	2927 mw,p		
...			
1676 m	$\alpha=\beta$	1680 m				
1617 w	α	1620 sh			1620 A'	v_7 13 $r_{5,2}$, 15 $r_{7,8}$, 18 $r_{9,10}$, 16 $r_{4,10}$
1584 w	α	1589 w	1589 mw	1591 mw,p	1588 A'	v_8 13 $r_{4,5}$, 24 $r_{8,9}$, 10 $r_{4,10}$
1556 w	α	1558 m	1560 mw	1559 w,p	1548 A'	v_9 71 $r_{2,3}$
1522 vw	β					
1475 w	$\alpha=\beta$					
1458 s	α	1459 s	1459 vs	1460 vs,p	1458 A'	v_{10} 11 $r_{7,8}$, 12 $r_{4,10}$, 14 $\alpha_{9,8,17}$, 12 $\alpha_{10,9,17}$
1454 sh	α, β		1448 sh		1445 A'	v_{11} 13 $\alpha_{12,11,13}$, 64 $\alpha_{12,11,14}$, 13 $\alpha_{13,11,14}$
1424 vs	$\beta>\alpha$	1426 vs	1429 vs	1426 vs,p	1452 A'	v_{12} 10 $r_{4,5}$, 13 $\alpha_{8,7,15}$, 13 $\alpha_{8,7,15}$
1412 sh	β		1413 sh	1410 sh	1431 A''	v_{34} 47 $\alpha_{12,11,13}$, 64 $\alpha_{13,11,14}$
1387 sh	β		1384 vw			
1355 sh	β	1340 vw	1348 vw	1350 vw,p	1351 A'	v_{13} 17 $\alpha_{1,11,12}$, 19 $\alpha_{1,11,13}$, 17 $\alpha_{1,11,14}$, 17 $\alpha_{12,11,13}$, 10 $\alpha_{12,11,14}$, 17 $\alpha_{13,11,14}$
1308 ms	$\alpha>\beta$	1309 ms	1307 m	1310 mw,p	A'	
1272 m	$\beta>\alpha$	1273 m	1272 ms	1274 m,p	1272 A'	v_{14} 10 $r_{4,10}$, 12 $\alpha_{4,10,18}$, 14 $\alpha_{5,10,18}$
1234 ms	$\beta>\alpha$	1238 ms	1235 s	1238 s,p	1233 A'	v_{15} 34 $r_{3,4}$, 14 $r_{5,7}$, 12 $\alpha_{5,7,15}$
1215 w	$\beta>\alpha$	1215 sh	1216 w	1216 sh	1212 A'	v_{16} 11 $r_{4,5}$, 12 $r_{5,7}$, 10 $r_{4,10}$, 10 $\alpha_{7,8,16}$
1195 vw	α		1192 vw			
1176 vw	β	1174 w	1177 vw	1178 vw,p		
1162 w	α					
1153 w	β	1157 mw	1155 w	1157 w,?		
1129 mw	β					
1121 mw	α	1125 m	1123 mw	1125 m,p	1122 A'	v_{17} 36 $r_{7,8}$, 12 $\alpha_{7,8,16}$, 10 $\alpha_{9,8,16}$
1110 w	α	1106 vw	1109 vw	1107 vw,p		
1082 sh	α					
1076 m	α	1079 ms	1075 w	1077 w,p	1098 A'	v_{18} 12 $r_{5,7}$, 17 $r_{8,9}$, 25 $r_{9,10}$, 10 $\alpha_{8,9,17}$
1064 sh	α	1068 ms				
1050 sh	$\alpha=\beta$	1045 w	1048 vw	1047 vw,p	1066 A'	v_{19} 17 $r_{5,6}$, 10 $r_{4,10}$, 10 $\alpha_{8,7,15}$
1020 m	$\alpha>\beta$	1019 ms	1019 w	1018 sh,?	1019 A'	v_{20} 20 $r_{1,2,3}$, 13 $r_{2,6}$, 10 $\alpha_{3,2,6}$

TABLE 2 (cont.)

infrared frequencies and polarizations(P)			Raman shift and polarizations (P)		Calc.	Assignments and P.E.D. (>10%)	
solid	P	liquid	solid	liquid			
1007 vs 997 sh	$\alpha=\beta$?	1004 s 998 sh	1007 m 995 sh	1007 m,p 995 sh,?	1004 A' 1003 A''	ν_{21} ν_{35}	$35\tau_{8,9}, 10\tau_{9,10}, 10\tau_{7,8}$ $21\gamma_{16}, 27\gamma_{17}, 13\gamma_{18}, 16\tau_{8,9},$ $10\tau_{9,10}$
970 m	α	968 sh	973 w	971 vw,?	981 A'	ν_{22}	$13\tau_{1,2}, 10\alpha_{1,11,12}, 43\alpha_{1,11,13},$ $10\alpha_{1,11,14}$
960 ms 936 w	$\alpha>\beta$ β	959 m 932 w	960 vw 930 vw	961 vw,?	974 A'' 966 A''	ν_{36} ν_{37}	$47\alpha_{1,11,12}, 47\alpha_{1,11,14}$ $26\gamma_{15}, 15\gamma_{16}, 23\gamma_{18}, 12\tau_{7,8},$ $10\tau_{8,10}$
889 w 874 vw 852 w 763 s 756 s	β β α β	882 w 870 vw 850 w 753 vs	890 vw 870 w,p 849 w 759 w		878 A'' 841 A'	ν_{38} ν_{23}	$30\gamma_{15}, 10\gamma_{17}, 28\gamma_{18}, 13\tau_{8,9}$ $11\tau_{1,2}, 17\tau_{3,4}, 10\tau_{4,10}, 14\alpha_{7,8,9}$
726 m 722 m	α β	725 s	724 vw	...	735 A''	ν_{40}	$15\gamma_{15}, 28\gamma_{17}, 12\tau_{7,8}, 13\tau_{4,10},$ $10\tau_{2,3}$
716 sh 705 ms	α β	704 mw	715 w 705 m 688 w	705 ms,p	700 A'	ν_{24}	$94\tau_{1,11}$
676 m 650 sh	β β	671 m 665 sh	678 w 646 vw	676 vw,p	694 A' 664 A'	ν_{25} ν_{26}	$28\tau_{5,6}, 14\alpha_{8,9,10}, 10\alpha_{4,10,9}$ $45\tau_{1,6}, 10\alpha_{2,3,4}$
592 w 588 w	β β	597 mw 586 w	596 w 589 vw	597 vw,dp 587 vw,p?	594 A'' 590 A'	ν_{41} ν_{27}	$35\gamma_1, 10\tau_{8,9}, 18\tau_{3,4}, 14\tau_{2,3}$ $18\tau_{1,2}, 13\alpha_{7,8,9}, 12\alpha_{5,4,10}$
533 vw 523 vw	$\alpha=\beta$ $\alpha>\beta$	528 sh 523 vw		...	525 A''	ν_{42}	$35\gamma_1, 28\tau_{8,9}$
504 vw	$\alpha=\beta$	502vw	502 m	502 m,p	494 A'	ν_{28}	$18\tau_{5,6}, 11\alpha_{4,5,6}, 14\alpha_{2,6,5}$
436 sh 429 m	α β		428 mw	428 vw,?	434 A''	ν_{43}	$15\tau_{7,8}, 10\tau_{3,7}, 19\tau_{9,10}, 10\tau_{3,4},$ $11\tau_{5,6}$
402 w	$\alpha=\beta$	397 w 371 sh	403 w 371 sh,p	401 w,p 371 sh,p	396 A'	ν_{29}	$12\tau_{5,6}, 17\alpha_{6,5,7}, 15\alpha_{2,1,11}$
365 m	β	365 m 300 vw	364 vw 295 vw	365 w,p 300 vw,dp	357 A' 297 A''	ν_{30} ν_{44}	$34\tau_{1,2}, 10\alpha_{3,4,10}$ $13\gamma_1, 13\tau_{4,10}, 24\tau_{2,3}, 23\tau_{2,6}$
279 w	α	272 w	279 w 207 w 166 vw 125 m	273 mw,p 203 w,dp 151 vw,dp 120 w,dp	263 A' 189 A'' 166 A'' 137 A' 99 A''	ν_{31} ν_{45} ν_{46} ν_{32} ν_{47}	$10\tau_{2,6}, 54\alpha_{2,1,11}$ $14\tau_{4,5}, 29\tau_{5,7}, 29\tau_{3,4}$ $88\tau_{1,11}$ $24\alpha_{1,2,3}, 25\alpha_{1,2,16}, 34\alpha_{2,1,11}$ $25\tau_{2,3}, 40\tau_{2,6}, 15\tau_{5,6}$ lattice mode lattice mode lattice mode
			86 s 46 vs 26 s		58 A''	ν_{48}	$97\tau_{1,2}$ lattice mode lattice mode

s=strong; m=medium; w=weak; r=stretch; α =i.p.bend; γ =o.o.p.bend; τ =torsion

which corresponds to the weak polarized Raman band at 365 cm^{-1} . On the contrary, only the mode calculated at 700 cm^{-1} is an almost pure $\text{S}_1\text{-CH}_3$ stretching.

Besides the previously discussed CH out-of-plane fundamental at 756 cm^{-1} , another γCH mode may be associated to the absorption band observed at 932 cm^{-1} in the spectrum of the liquid, on the basis of the prevailing β -polarization shown by its counterpart in the polarized spectra. Another γCH fundamental is tentatively assigned to the weak infrared band at 889 cm^{-1} which shows a clear β -type polarization and has only a very weak counterpart in the Raman spectra of solids. As to the remaining γCH fundamental, which is predicted at 1003 cm^{-1} by the calculations and near 970 cm^{-1} by correlative arguments^{10,13}, it is possible that this mode is hidden by the strong absorption band with a maximum at 1007 cm^{-1} , which shows both α - and β -polarized components. No obvious candidate may be proposed for the assignment and the choice of the shoulder at 997 cm^{-1} , of uncertain polarization, must be considered as tentative.

ACKNOWLEDGEMENT

This work was supported by a research grant of Ministero dell'Università e della Ricerca Scientifica e Tecnologica of Italy.

REFERENCES

1. Metzger J.V. Thiazoles and their Benzo Derivatives. In: Katritzky A.R., Rees C.W. *Comprehensive Heterocyclic Chemistry*. Potts K.T. Ed. Oxford: Pergamon Press 1984;6:235-331
2. Limburg W.W., Mammino J., Liebermann G., Griffiths C.H., Shahin M.M., Malhotra S.L., Chen L., Perron M.E. Method for obtaining improved image contrast in migration image members. U.S. US 5,514,505 (Cl.430-41;G03G17/10), 7 May 1996, Appl.441,360, 15 May 1995;147 pp.
3. Berneth H., Claussen U. Electrochromic system. PCT Int. Appl. WO 97 30,135 (Cl. C09K9/02), 21 Aug. 1997, DE Appl. 19,605,448, 15 Feb. 1996;40 pp.
4. Hofmann A.W. Zur Kenntniss des o-Amido-phenylmercaptans. Berichte 1887; 20:1788-1797.
5. Hartshorne N.H., Stuart A. *Practical Optical Crystallography*, London: Edward Arnold (Publishers) Ltd., 1964:181-189.
6. Wheatley P.J. The crystal and molecular structure of 2-methylthiobenzothiazole. J. Chem. Soc. 1962:3636-3638.

7. Gaussian 94, Revision E.1, Frisch M.J., Trucks G.W., Schlegel H.B., W.Gill P.M., Johnson B.G., Robb M.A., Cheeseman J.R., Keith T., Petersson G.A., Montgomery J.A., Raghavachari K., Al-Laham M.A., Zakrzewski V.G., Ortiz J.V., Foresman J.B., Cioslowski J., Stefanov B.B., Nanayakkara A., Challacombe M., Peng C.Y., Ayala P.Y., Chen W., Wong M.W., Andres J.L., Replogle E.S., Gomperts R., Martin R.L., Fox D.J., Binkley J.S., Defrees D.J., Baker J., Stewart J.P., Head-Gordon M., Gonzalez C. and Pople J.A., Gaussian Inc., Pittsburgh PA, 1995.
8. Boatz J.A. and Gordon M.S. Decomposition of normal-coordinate vibrational frequencies. *J.Phys.Chem.* 1989; 93: 1819-1826
9. Keresztry G., Wang A.Y. and Durig J.R. On the definition and usage of torsional and twisting coordinates in force field calculations. *Spectrochim. Acta* 1992; 48A:199-204
10. Varsany G. *In Vibrational Spectra of Benzene Derivatives*. New York: Academic Press, 1969:339-341
11. Varsany G. *In Vibrational Spectra of Benzene Derivatives*. New York: Academic Press, 1969:294-297
12. Colthup N.B., Daly L.H. and Wiberley S.E. *In Introduction to Infrared and Raman Spectroscopy*. San Diego: Academic Press, 1990:372
13. Panizzi J.C., Davidovics G., Guglielmetti R., Mille G., Metzger J. and Chouteau J. Etude des spectres de vibration du benzothiazole et des oscillations des liaisons CH de quelques uns de ses dérivés. *Can.J.Chem.* 1971; 49 :956-964

Date Received: September 8, 1999

Date Accepted: February 20, 2000